The Weighted Lp and BMO Estimates for Fractional Hausdorff Operators on the Heisenberg Group

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted norm estimates and Lp-spectral independence of linear operators

We investigate the Lp-spectrum of linear operators defined consistently on Lp(Ω) for p0 ≤ p ≤ p1, where (Ω, μ) is an arbitrary σ-finite measure space and 1 ≤ p0 < p1 ≤ ∞. We prove p-independence of the Lp-spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω, μ); the balls with respect to this semi-metric are required to satisfy a...

متن کامل

Weighted Estimates for Bilinear Fractional Integral Operators and Their Commutators

In this paper we will prove several weighted estimates for bilinear fractional integral operators and their commutators with BMO functions. We also prove maximal function control theorem for these operators, that is, we prove the weighted Lp norm is bounded by the weighted Lp norm of a natural maximal operator when the weight belongs to A∞. As a corollary we are able to obtain new weighted esti...

متن کامل

Estimates for Spectral Projection Operators of the Sub-Laplacian on the Heisenberg Group

In this paper, we use Laguerre calculus to find the Lp spectrum (λ, μ) of the pair (L, iT). Here L = −12 ∑n j=1(ZjZj+ZjZj) andT = ∂ ∂t with {Z1, . . . ,Zn,Z1, , . . . ,Zn,T} a basis for the left-invariant vector fields on the Heisenberg group. We find kernels for the spectral projection operators on the ray λ > 0 in the Heisenberg brush and show that they are Calderón-Zygmund-Mikhlin operators....

متن کامل

p-ESTIMATES FOR SINGULAR INTEGRALS AND MAXIMAL OPERATORS ASSOCIATED WITH FLAT CURVES ON THE HEISENBERG GROUP

The maximal function along a curve (t, γ (t), tγ (t)) on the Heisenberg group is discussed. The L p-boundedness of this operator is shown under the doubling condition of γ ′ for convex γ in R. This condition also applies to the singular integrals when γ is extended as an even or odd function. The proof is based on angular LittlewoodPaley decompositions in the Heisenberg group.

متن کامل

Singular Convolution Operators on the Heisenberg Group

1. Statement of results and outline of method. The purpose of this note is to announce results dealing with convolution operators on the Heisenberg group. As opposed to the well-known situation where the kernels are homogeneous and C°° away from the origin, the kernels we study are homogeneous but have singularities on a hyperplane. Convolution operators with such kernels arise in the study of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces

سال: 2020

ISSN: 2314-8896,2314-8888

DOI: 10.1155/2020/5247420